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Abstract. We perform an experimental study of the time behavior of the α-wave events occurring in
human electroencepholographic signals. When the subjects have to keep their eyes open, we find that the
fraction of the time spent in an α-burst of time size τ exhibits a scaling behavior as a function of τ . The
corresponding exponent is equal to 1.75 ± 0.13. Furthermore, we show that our experimental result may
have a possible explanation within a class of Self-Organized Critical (SOC) models recently proposed by
Boettcher and Paczuski. In particular, one of these models, when properly re-interpreted, appears to be
consistent both with our experimental result and a physiological description of the possible origin of α-wave
events.

PACS. 87.10.+e General theory and mathematical aspects – 05.45.-a Nonlinear dynamics and nonlinear
dynamical systems

1 Introduction

Trying to understand and encode in rather simple mod-
els the fundamental properties underlying the richness and
complexity of biological systems and functions has become
a major topics in modern biology. Despite their appar-
ent complexity, some of these systems/functions exhibit,
among other features, a tendency for organization as well
as self-organization which can occur at various levels. A
simple example in morphogenesis is provided by the or-
ganized variability observed in the branching structure of
the lung which can be explained by scaling arguments,
first introduced a long time ago in [1] and further devel-
oped in [2]. The concept of scaling is now well established
in biology and physiology (for a review see e.g. [3]) and
appears to be a useful tool to understand features of many
processes. In particular, scaling shows up in the power law
behavior of some observables.

The human brain is one of the most complex physiolog-
ical systems. It involves billions of interacting physiolog-
ical and chemical processes giving rise to the experimen-
tally observed neuroelectrical activity. The corresponding
dynamics exhibits a complicated behavior which reflects
itself in electrophysiological recordings, namely the elec-
troencephalographic recordings (EEG), which, roughly
speaking, are assumed to capture the mean electrical ac-
tivity generated by the (O(107)) neurons involved in the
small area of the cortex (says, O(1)cm2) surrounding
the electrode. Recall that the cortex is the outer most
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(2 mm thick) layer of the brain. The attempts to ex-
tract relevant information from the neuroelectrical activ-
ity have generated a large amount of investigations for
more than 20 years, the former one mainly based on the
Fourier analysis of the time series stemming from the
EEG signal [4]. In order to quantify the EEG, models
for the origin of the EEG that take into account some
of the anatomical and neurophysiological features of the
brain were developed [5], in particular continuum models
offering a way to describe the macroscopic scale (wave-
like) electrical activity [6] of the EEG and numerical sim-
ulations both at macroscopic and microscopic (cellular)
scale1 [7]. Besides, the use of powerful methods inherited
from non linear physics have provided a deeper insight into
the fundamental properties ruling the observed neuroelec-
trical dynamics and, in particular, the possible occurrence
of self-organization in the cortical electrical activity has
been suggested in recent works [8], but so far no evidence
for scaling laws in the corresponding dynamics has been
reported.

One of the major difficulties to observe a power law
in human neuroelectrical activity is to determine rele-
vant observables from the EEG signal. Recall that the
evolution from a deep sleep to an (active) awakening
level reflects itself into four dominant regimes of the
EEG signal which are conventionally classified accord-
ing to their frequency range [9]. These four regimes are

1 together with studies on the complementarity of the various
models and attempting to bridge the microscopic and macro-
scopic scales
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Fig. 1. On panel (a) is depicted the
time average of the square modulus of the
wavelet transform of a typical EEG signal
whose maxima, indicated by the darkest
areas, correspond to α-events. The corre-
sponding lifetimes are collected on panel
(b). An example of successive α-events oc-
curring in the EEG signal is presented in
panel (c).

called δ-waves ([0.5 Hz, 4 Hz]), θ-waves ([4 Hz, 8 Hz]),
α-waves ([8 Hz, 12 Hz]) and β-waves ([13 Hz, 19 Hz]) (the
lowest frequency range δ corresponding to a deep sleep
level). It is known that α-waves occur when human awak-
ening level drops down slowly towards sleep [9]. α-waves
represent therefore an electroencephalographic landmark
of drowsiness. Successive α-wave events/bursts can be ob-
served for a rather long period (up to a few hours) with
typical time size (lifetime) from O(100)ms up to O(10)s.
They can be easily isolated from the background EEG ac-
tivity so that they are good candidates for study. Figure 1
shows successive α-wave events with different lifetimes.
Notice the irregular variations of the occurrence times be-
tween the onset of two successive α events.

In this paper, we study the lifetime of α-wave events
occurring in EEG signals recorded on two groups of human
subjects having a mild sleep deprivation. In the first group,
all the subjects have to keep their eyes open whereas in
the second one they keep their eyes closed. The signal pro-
cessing is performed using a standard wavelet transform
analysis [10] which appears to be well-suited to deal with
the transients involved in the EEG’s and in particular to
extract reliably the various α-wave events [11]. For each
EEG signal, we measure the cumulated time for α-events
with fixed time size τ , normalized to the total duration
of the EEG signal (which basically represents the fraction
of the time spent in an α-burst of time size τ), hereafter
denoted by Pexp(τ). For the first group of subjects (eyes
open), we find that Pexp(τ) has a power law form given by
Pexp(τ)∼τ−ω with ω = 1.75± 0.13. This provides a new
example of a power law with fractional exponent appear-
ing in this area of physiology. Furthermore, we show that
this experimental result may have a possible explanation
within a class of Self-Organized Critical (SOC) models
recently discussed in the physics literature [12]. In partic-
ular, one of these models, when properly re-interpreted,
appears to be consistent both with our experimental re-
sult and a physiological description of the possible origin of

α-wave events, therefore suggesting that this model may
be of some relevance for the description of the time distri-
bution of the transitions between α and “non α” states,
that is, the temporal architecture of the α-bursts.

2 A power law in the α-wave dynamics

Let us first describe briefly the pure experimental part
of this work (i.e. the data recording). The experimen-
tal procedure consists in recording the EEG activity of
two groups of subjects (defined below) who all have had
a four hours sleep deprivation during the previous night.
Each subject was installed in the sitting posture for a two-
hour EEG recording. Each EEG signal was obtained from
temporal and occipital electrode location and was further
filtered through a [0.5 Hz, 30 Hz]-bandpass and digitally
converted at a rate of 200 samples/s. In order to test the
influence of the visual cortex and other neural visual path-
ways on the development of α-waves, two groups of sub-
jects have been considered: the group 1 (resp. 2) involving
10 (resp. 5) subjects having to keep their eyes open (resp.
closed) corresponding to visual (resp. non visual) relaxed
thinking.

To get more insight into the dynamics governing the
occurrence of α-bursts, we choose the α-events lifetime
as a representative physical observable [13]. The vari-
ous α-events (and corresponding lifetimes) are easily ex-
tracted from any EEG signal s(t) using standard wavelet
analysis [10,11]. In particular, α-events correspond to
those part of the signal whose wavelet transform modulus
is maximum in the α-frequency range [8 Hz, 12 Hz]. Recall
that the continuous one-dimensional wavelet transform is
given by [10]

(Wψs)(b, a) = |a|− 1
2

∫ +∞

−∞
dt s(t) ψ∗

(
t− b
a

)
, (1)
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where the real parameters a (a > 0) and b are respec-
tively the scale and time parameter, ψ(t) is the so-called
mother function and ∗ denotes complex conjugation. In
what follows, we choose ψ(x) = π1/4 exp(iθ0x) exp(−x2/2)
where θ0 is a numerical constant [14], which is particularly
suitable for frequency characterization and offers a good
compromise between frequency resolution and time local-
ization [11]. In the numerical analysis, we consider the
discrete version of (1) which can be written as

(Wψs)(n, a)=
(
δt

a

)1/2 N−1∑
n′=0

s(n′)ψ∗
(

(n′ − n)δt
a

)
(2)

for any EEG signal s(nδt) (n integer) of total duration
Nδt, where δt is the time step.

It is convenient to consider the time average of the
square modulus of (2). The corresponding expression is
given by

〈|(Wψs)(mδt′, a)|2〉 =
(m+1)k−1∑
n=mk

1
k
|(Wψs)(nδt, a)|2,

k =
δt′

δt
; m = 0, 1, ...,

(
N

k
− 1
)

(3)

where k is a reduction factor from δt to δt′ [15], this later
being identified with the uncertainty in time localization.
This permits one to disregard the events whose time du-
ration is shorter than δt′ (and also to eliminate spurious
effects due to EEG background noise). Then, any α-burst
will correspond to the part of the signal for which (3) is
maximum when the scale parameter a belongs to a range
associated with the α-frequency range [8 Hz, 12 Hz]. The
corresponding lifetime can then be straightforwardly ob-
tained from (3).

We have extracted all the α-events from the EEG ac-
tivity in each of the EEG signals and determined the cor-
responding lifetimes. This allows us to define Pexp(τ), the
fraction of the time spent in an α-burst of time size τ . For
the group 1 (subjects with eyes open), we find that this
quantity exhibits a scaling behaviour, Pexp(τ) ∼ τ−ω . The
corresponding exponent is found to be

ω = 1.75± 0.13, (4)

where the second term in (4) (standard deviation) reflects
both the inter individual variability and artifacts such as
eyes motions and/or muscular activity (which are inher-
ent to EEG measurement). A similar analysis performed
for the data obtained from the group 2 (subjects with
eyes closed) leads to the conclusion that Pexp(τ) does not
obey a power law. Indeed, a careful inspection of the data
shows clearly that no slope can be defined when plotting
log(Pexp(τ)) versus log(τ) (Fig. 2).

The comparison of both experimental results first in-
dicates that there is likely to be an important influence of
the visual cortex on the development of α-waves when the
eyes are open. Moreover in this later situation, the fact
that the overall temporal pattern of α-waves (and in par-
ticular the temporal behaviour of the transitions between,

says, an α-state and a “non α” one) exhibits a power law
may reflect a specific property of the corresponding dy-
namics. It is therefore interesting to examine what may be
the origin of the observed scaling law in the distribution
of the time size of periods of α activity which character-
izes the dynamics of the transitions between α and “non
α”-states. Developing a complete model of EEG2 repro-
ducing the above experimental observations is beyond the
scope of the present paper. In what follows, we will try to
analyze if the observed power law can be recovered in the
framework of a statistical model that includes some fea-
tures of a commonly accepted physiological description,
owing to the fact that one has to deal with a system hav-
ing a large number of degrees of freedom, intermittency
in the α activity whose temporal dynamics is character-
ized by the scaling exponent (4). To do this, we adopt a
phenomenological viewpoint.

3 Discussion

Let us first start with general physiological considerations.
Although α-wave occurrence is an important feature of the
EEG activity, the corresponding precise cellular mecha-
nisms are not well known. However, it is commonly ac-
cepted that α-waves have a cortical origin and are driven
by presynaptic inputs from the thalamic level with local
cortical factors [16]. Notice that the measurement of the
α-waves through the EEG cannot be viewed as a mea-
surement representing a global phenomenon of the cortex.
Indeed, it is known that the observed α-activity depends
strongly of the considered area of the cortex. Furthermore,
even on an area where the α-activity can occur signifi-
cantly at a given time, noticeable spatial variations in the
behavior of the α-bursts can be currently observed for dif-
ferent positions of the electrode on this area.

When drowsiness occurs, a sleep inducing mechanism
may alter some global and/or local control parameters of
small clusters of neurons (e.g. O(103−104) neurons). Typi-
cally, these clusters may represent corticocortical columns
with excitatory and inhibitory neurons which could ini-
tiate α-waves in the EEG by the way of multiple-length
scale interactions present in the cortex [5]. Corticocorti-
cal columns are small functional units with no specific
afferents that provide multiple excitatory and inhibitory
inputs to other (e.g. O(10−100)) corticocortical columns.
Note that the electrode of the EEG captures the electri-
cal activity generated typically by O(103 − 104) clusters
(or equivalently by O(107) neurons as announced in the
introduction).

We are now in position to propose a simple tenta-
tive interpretation of the power law that we have ob-
served experimentally in the α-wave dynamics within
the framework of a class of statistical models. To do
this, we first notice that the temporal architecture of

2 Notice that most of the EEG models are devoted to the
study of wavelike processes corresponding to steady states of
the cerebral cortex whereas in the present situation one has to
deal with transitions between states.
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Fig. 2. Log-log plot of the frac-
tion of time spent in an α-burst
of lifetime τ versus τ . All the
data for the subjects are col-
lected in Figure 2a. The straight
line depicted in Figure 2a cor-
responds to an exponent equal
1.75, obtained by first fitting the
data for each subject by using
the mean square method (see
Fig. 2b for a typical example for
a given subject) and then aver-
aging the results over the 10 sub-
jects. The corresponding stan-
dard deviation is equal to 0.13.

the α-bursts which is currently observed, where basically
peculiar changes are concentrated in time intervals inter-
rupting periods of inactivity, is somehow similar to a punc-
tuated equilibrium behavior. This later appears in partic-
ular within a class of SOC models [12], called multi-trait
models, which can be viewed as extensions of the origi-
nal Bak-Sneppen model [17]. These models are defined as
follows (for more details see [12] and Ref. therein): each
site of a D-dimensional lattice is labelled by M numbers
belonging to the unit interval. At every time step, the
smallest number in the lattice is replaced by a new num-
ber randomly chosen from a flat distribution in the unit
interval, whereas one of the M numbers on each neigh-
boring site is also randomly replaced by a new random
number taken from the flat distribution.

In order to exhibit a possible link between the above
mentioned models and the present experimental situation,
we introduce the following set of hypothesis: First, we as-
sume that the relevant part of the cortex that give rise
to the α activity that we have observed here can be mod-
eled by an effective 1-dimensional lattice. Then, each site
is identified with a cluster of neurons (that is, a cortico-
cortical column). Since each cluster is in fact under the
control of a large number of parameters (external neu-
ronal inputs, neuromodulators, ion channels, etc.), it is
reasonable to consider the limit M → ∞. Furthermore,
we assume that an α-burst may start when some control
parameters driving the activity level of only one cluster
among the O(103 − 104) clusters monitored by the elec-
trode of the EEG drop below some threshold. In this situ-
ation, this cluster would become incapable of information
processing, (therefore becoming presumably isolated from
the other ones). The α-wave would then presumably last
until information can be processed again, due to some re-
activation mechanism. In other words, the α activity de-
tected by the electrode would therefore correspond to the
inactivation of only one column among the O(103 − 104)
ones that are covered by the electrode.

Before going further, some comments are in order. It
appears that the last hypothesis, which basically means
that only one (or a few) specific unit/center is responsible
for the signal detected by the electrode, underlies a notice-
able part of the studies on the EEG aiming to interpret ob-
servational facts in the framework of self-organization. For
an experimental neurophysiological discussion, see [18],
and references therein. Now, according to the previous dis-
cussion, and assuming that the above hypothesis are valid,
the D = 1, M → ∞ multi-trait model appears naturally
to be suitable for providing a possible interpretation of the
experimentally observed power law. This model has been
considered in detail in [12] and is known to represent a
different universality class than the Bak-Sneppen model.
Its punctuated equilibrium behavior has been character-
ized in particular through PF (τ) the distribution of (time)
sizes of periods of inactivity (∼isolation) for a given site.
In turn, this can then be identified with Pexp(τ). This
quantity, by definition, is simply the distribution of time
periods of isolation of some cortical area. The distribution
PF (τ) has been shown [12] to obey a power law given by

PF (τ) ∼ τ−7/4, (5)

whose exponent is in good agreement with the one given
in (4) which characterizes the scaling behavior of Pexp(τ)
that we have determined experimentally. This is consis-
tent with the D = 1 M → ∞ multi-trait model being of
some relevance to the dynamics of the α-bursts in EEG
activity3.

3 The corresponding exponent in the D = 2 directed perco-
lation model is equal to 1.84 [19]. Strictly speaking, this model
is still consistent with our experimental result although the
existence of a preferred direction in the cortex is difficult to
reconcile with the present physiological knowledge. We there-
fore consider this model as rather unsuitable for describing the
α-wave dynamics.
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Let us summarize the main result of this paper. We
have first identified experimentally a new power law oc-
curring in the temporal pattern of α-waves which is ob-
served whenever the eyes are open. The influence of the
visual cortex has been also examined experimentally and
appears to be important for the occurrence of the power
law. We then try to propose a tentative interpretation of
the above result in the framework of a particular (statis-
tical) model in order to examine if the power law might
be the indirect signature of a specific property ruling the
dynamics of the α-burts. We have found that our exper-
imental result may be understood in the framework of a
particular SOC model, namely the D = 1 M →∞ multi-
trait model [12], provided some hypothesis are valid. We
note en passant that the dynamics of the α-rhythms would
then appear to give a hint toward a theoretical proposal
regarding self-organization of cerebral activity [20].

Since our analysis suggests that the above mentioned
SOC model may be successfully applied to describe some
of the dynamics of the α-bursts for which, consequently,
self-organization and punctuated equilibrium behavior
may well play a salient role, some experimental investi-
gation on the validity of the hypothesis underlying the
present analysis must be performed. In particular, it is
important to test experimentally the existence of a spe-
cific corticocortical column responsible for the detected α
activity among those covered by the electrode together
with the nature of the reactivation mechanism for the
columns which should result from the interconnection of
the columns. Obviously, this cannot be directly done on
human because it would need to perform electrophysio-
logical recordings at the level of one or a few clusters
of neurons directly in the cortex, to localize in particu-
lar possible candidates responsible for the α-activity (i.e.
α-generators). However, a possible way to overcome this
difficulty would be to carry out such experimental investi-
gations on animals (e.g. mamalians) for which a somehow
comparable situation in the EEG would have been identi-
fied, that is, for which a specific EEG activity mimicking
the human α-activity is known to exist and which would
exhibit a power law in the corresponding temporal pattern
for some given environmental condition.

We are very grateful to A. Comtet, D. Dean, M. Goldman and
O. Martin for critical discussions and comments.

References
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